GEBZE TECHNICAL UNIVERSITY PHYSICS DEPARTMENT

PHYSICS LABORATORY I
 EXPERIMENT REPORT

THE NAME OF THE EXPERIMENT
Motion with Constant Acceleration in Inclined Plane

PREPARED BY

NAME AND SURNAME :
STUDENT NUMBER :
DEPARTMENT :
GROUP NO :
TEACHING ASSISTANT :
DATE OF THE EXPERIMENT
DATE
: / /

Equipment

- Air track with standard accessories
- Air blower
- Two SpeedGates incl. connection cable
- Wooden ramps for heigh

Figure 1 : Motion with Constant Acceleration in Inclined Plane

Experimental Procedure:

1. On a SpeedGate screen, the upper line is switched using the single dash button \mathbf{I}, and the lower line is changed using the double dash button II . To reset the values on the screen, the \mathbf{X} button is pressed.
2. Configure SpeedGate-A with "Previous Value" on the lower line using the double dash button II and SpeedGate-B with " Interval Before " on the lower line using the double dash button II.
3. L is the length of the airway (inclined plane, $L=m$) and H is the height of the airway.
4. x is the distance between SpeedGate-A and SpeedGate-B that the glider covers, which is the distance it travels on the inclined plane.
5. Using small square boards, change the height H of one side of the airway as in Table 1.
6. According to different x values in Table 1, change the distance between SpeedGate-A and SpeedGate-B by changing only the position of SpeedGate-A.
7. Change the height H of one side of the airway using small square boards.
8. Then calculate the average of 5 time measurements for each value of x , write under column $\mathrm{t}_{\text {avg }}$ in Table 1.

Table 1 : Measured positions-intervals times

$\mathbf{H}=0.9 \mathrm{~m}$							
\mathbf{x} (m)	$t_{1}(\mathrm{~s})$	t_{2} (s)	$\mathrm{t}_{3}(\mathrm{~s})$	t_{5} (s)	t_{4} (s)	$\mathrm{tavg}_{\text {(}} \mathrm{s}$)	$\mathrm{t}^{\mathbf{2}}$ avg $\left(\mathrm{s}^{\mathbf{2}}\right)$
0.8							
0.6							
0.4							
0.2							

Signature:

Plot the position x and time t data from Table 1 on the graph using points. Then draw a curve passing through these points as good as you can by your crude eye estimation.

Figure 1: The position x - time t graph

1) Regarding the theoretical background in Eq.(6), what type of a curve is expected to pass through the points?

Signature:

Draw the $\mathrm{x}-\mathrm{t}^{2}$ graph using the positions x and square the time average t^{2} avg values above.

Figure 2: The position x-square the time average t^{2} avg graph
2) Comment on the velocity of the object from this graph? Explain the reason.
\qquad
\qquad
\qquad

Signature:

Calculate the slopes of the lines that fit the data points on your x vs. t^{2} graphs, which are plotted in the previous step. In the following formulae, the x_{i} 's represent square the time average t^{2} avg, while the y_{i} 's represent the positions $x . n$ is the number of data used in calculations. Write down the intermediate steps.
$\sum_{i=1}^{n} x_{i} y_{i}=$

$$
m=\frac{\sum_{i=1}^{n} x_{i} y_{i}}{\sum_{i=1}^{n} x_{i}^{2}}=
$$

$\sum_{i=1}^{n} x_{i}^{2}=$
3) How is the acceleration of an object calculated with the help of the $x-t^{2}$ graph given in Figure 2 ? Explain.
\qquad
\qquad
\qquad

Write down the experimental acceleration $a_{\text {Exp }}$ calculated from the graph and the theoretical acceleration $a_{\text {Theo }}$ from Eq. (4) and calculate percent error acceleration $\% a_{\text {error }}$.

Write down the intermediate steps.

$$
a_{E x p}=
$$

$\sin (\theta)=\frac{H}{L}==$ \qquad
$\% a_{\text {error }}=\left|\frac{a_{\text {Theo }}-a_{\text {Exp }}}{a_{\text {Theo }}}\right| 100=$

Signature:

Conclusion, Comment and Discussion:

(Tips: Give detail explanation about what you've learned in the experiment and also explain the possible errors and their reasons.)
-Give detail explanation about what you've learned in the experiment
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
-Explain the possible errors and their reasons in the experiment
\qquad
\qquad
\qquad
\qquad
\qquad

Questions

1. Derive Eq. 4 and Eq. 5 from Eq. 6 in the theoretical experiment guide.

2. In the system we have adjusted according to the $30^{\circ}, 45^{\circ}, 75^{\circ}$ angles of the inclined plane, list the glider speeds released at the same height from the largest to the smallest. $\left(\mathrm{a}_{30^{\circ}}, \mathrm{a}_{45^{\circ}}, \mathrm{a}_{75^{\circ}}\right)$

Signature:

